Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [257012]
Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species
De Meester, N.; Derycke, S.; Rigaux, A.; Moens, T. (2015). Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos (Kbh.) 124(5): 561-570. https://dx.doi.org/10.1111/oik.01779
In: Oikos (København). Munksgaard: Copenhagen. ISSN 0030-1299; e-ISSN 1600-0706
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • De Meester, N.
  • Derycke, S., more
  • Rigaux, A.
  • Moens, T., more

Abstract
    Competition is one of the main drivers of dispersal, which can be an important mechanism to achieve permanent or temporal coexistence of multiple species. This coexistence can be achieved by a dispersal-competition tradeoff, spatial store effects or neutral dynamics. Here we test the effect of inter- and intraspecific competition on dispersal of four species of the marine nematode species complex Litoditis marina. A previous study in closed microcosms without a possibility for dispersal had demonstrated pronounced interspecific competition, leading to the exclusion of one species. We now investigated whether 1) the dispersal is affected by interspecific interactions, by intraspecific competition (density) or by food availability, 2) the dispersal dynamics influence assemblage composition and can lead to co-occurrence of the species, and 3) the abiotic environment (here salinity) can affect these dynamics. We show that density is the main driver for dispersal in two of the four species. Dispersal of a third species always started at the same time irrespective of density, whereas in the fourth species interspecific interactions accelerated dispersal. Remarkably, this fourth species was not a strong competitor, suggesting that a dispersal–competition tradeoff does not explain the observed coexistence. Salinity did not alter the timing of dispersal when interspecific interactions were present but did affect assemblage composition. Consequently, spatial store effects may influence coexistence. All four species co-occurred in fairly stable abundances throughout the present experiment indicating the importance of species specific dispersal strategies for coexistence. Co-occurrence can be facilitated because competition is postponed or avoided by dispersal. Neutral dynamics also played a role as intra- and interspecific competition were of similar importance in three of the four species. We conclude that dispersal is a driver of the coexistence of closely related nematode species, and that population density and interspecific interactions shape these dynamics.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org