Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [260963]
The distribution of an invasive fish species is highly affected by the presence of native fish species: evidence based on species distribution modelling
Verhelst, P.; Boets, P.; Van Thuyne, G.; Verreycken, H.; Goethals, P.L.M.; Mouton, A. (2016). The distribution of an invasive fish species is highly affected by the presence of native fish species: evidence based on species distribution modelling. Biological Invasions 18(2): 427-444. https://dx.doi.org/10.1007/s10530-015-1016-y
In: Biological Invasions. Springer: London. ISSN 1387-3547; e-ISSN 1573-1464, more
Peer reviewed article  

Available in  Authors 

Keywords
    Pseudorasbora parva (Temminck & Schlegel, 1846) [WoRMS]
    Fresh water
Author keywords
    Topmouth gudgeon Non-native Belgium Biotic resistance Species distribution modelling Invasive fish species

Authors  Top 
  • Verhelst, P.
  • Boets, P.
  • Van Thuyne, G.
  • Verreycken, H.
  • Goethals, P.L.M.
  • Mouton, A.

Abstract
    Topmouth gudgeon (Pseudorasbora parva) is one of the most invasive aquatic fish species in Europe and causes adverse effects to ecosystem structure and functioning. Knowledge and understanding of the species’ interactions with the environment and with native fish are important to stop and prevent the further spread of the species. Creating species distribution models is a useful technique to determine which factors influence the occurrence and abundance of a species. We applied three different modelling techniques: general additive models, random forests and fuzzy habitat suitability modelling (FHSM) to assess the habitat suitability of topmouth gudgeon. The former two techniques indicated that the abundance of native fish (i.e. biotic variables) was more important than environmental variables when determining the abundance of topmouth gudgeon in Flanders (Belgium). Bitterling (Rhodeus amarus), stone loach (Barbatula barbatula), three-spined stickleback (Gasterosteus aculeatus) and predator abundance were selected as the most important biotic variables and implemented in the FHSM to investigate species interactions. Depending on the preferred food source and spawning behaviour, either coexistence or interspecific competition can occur with bitterling, stone loach and three-spined stickleback. In contrast, the presence of predators clearly had a top down effect on topmouth gudgeon abundance. These findings could be applied as a biological control measure and implemented in conservation strategies in order to reduce the abundance of earlier established populations of topmouth gudgeon.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org