Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [280769]
Inferring the ancestral function of the posterior Hox gene within the bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra
Moreno, E.; De Mulder, K.; Salvenmoser, W.; Ladurner, P.; Martínez, P. (2010). Inferring the ancestral function of the posterior Hox gene within the bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evolution & Development 12(3): 258-266. dx.doi.org/10.1111/j.1525-142X.2010.00411.x
In: Evolution & Development. Wiley-Blackwell: Hoboken. ISSN 1520-541X; e-ISSN 1525-142X
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Moreno, E.
  • De Mulder, K.
  • Salvenmoser, W.
  • Ladurner, P.
  • Martínez, P.

Abstract
    Molecular phylogenies place the acoel flatworms as the sister-group to the remaining Bilateria, a position that should prove very valuable when trying to understand the evolutionary origins of the bilaterian body plan. A major feature characterizing Bilateria is the presence of two, orthogonal, body axis. In this article we aim at tackling the problem of how the bilaterian anterior–posterior (AP) axis is organized, and how this axis have been established over evolutionary time. To this purpose we have studied the role of some key regulatory genes involved in the control of the AP axis, the Hox family of transcription factors. All acoels studied to date contain a minimal complement of three Hox genes that are all expressed in nested domains along this major axis, providing the oldest evidence for a “Hox vectorial system” working in Bilateria. However, this proposition is not based in the analysis of Hox functions. Here we document the specific roles of one posterior Hox gene, IpHoxPost, in the postembryonic development of the acoel Isodiametra pulchra. The analysis has been done using RNA interference technologies, for the first time in acoels, and we demonstrate that the functions of this gene are restricted to the posterior region of the animal, within the muscular and neural tissues. We conclude, therefore, that the posterior Hox genes were used to specify and maintain defined anatomical regions within the AP axis of animals since the beginning of bilaterian evolution.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org