Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [29147]
Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters
Huisman, J.; Sommeijer, B. (2002). Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters. J. Sea Res. 48(2): 83-96. https://dx.doi.org/10.1016/S1385-1101(02)00137-5
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101; e-ISSN 1873-1414
Also appears in:
Philippart, C.J.M.; Van Raaphorst, W. (Ed.) (2002). Structuring Factors of Shallow Marine Coastal Communities, part I. Journal of Sea Research, 48(2). Elsevier Science: Amsterdam. 81-172 pp., more
Peer reviewed article  

Available in  Authors 

Keywords
    Algal blooms
    Biological production
    Computation
    Dimensions > Depth
    Equations
    Layers > Water column > Mixed layer
    Physics > Mechanics > Fluid mechanics > Fluid dynamics
    Trade
    Transport processes > Diffusion
    Turbulence
    Marine/Coastal
Author keywords
    Harmful algal blooms; Computational Fluid Dynamics (CFD); Numerieke stromingsleer; Export production; Mixed-layer depth; Reaction-diffusion equation

Authors  Top 
  • Huisman, J.
  • Sommeijer, B.

Abstract
    Phytoplankton use light for photosynthesis, and the light flux decreases with depth. As a result of this simple light dependence, reaction-advection-diffusion models describing the dynamics of phytoplankton species contain an integral over depth. That is, models that simulate phytoplankton dynamics in relation to mixing processes generally have the form of an integro-partial differential equation (integro-PDE). Integro-PDEs are computationally more demanding than standard PDEs. Here, we outline a reliable and efficient technique for numerical simulation of integro-PDEs. The simulation technique is illustrated by several examples on the population dynamics of sinking phytoplankton, using both single-species models and competition models with several phytoplankton species. Our results confirm recent findings that Sverdrup's critical-depth theory breaks down if turbulent mixing is reduced below a critical turbulence. In fact, our results show that suitable conditions for bloom development of sinking phytoplankton depend on a number of critical parameters, including a minimal depth of the thermocline, a maximal depth of the thermocline, a minimal turbulence, and a maximal turbulence. We therefore conclude that models that do not carefully consider the population dynamics of phytoplankton in relation to the turbulence structure of the water column may easily lead to erroneous predictions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org