Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [314225]
Ship manoeuvring model parameter identification using intelligent machine learning method and the beetle antennae search algorithm
Chen, C.; Tello Ruiz, M.; Delefortrie, G.; Mansuy, M.; Mei, T.; Vantorre, M. (2019). Ship manoeuvring model parameter identification using intelligent machine learning method and the beetle antennae search algorithm, in: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering - Volume 7B: Ocean Engineering. pp. [1-9]. https://dx.doi.org/10.1115/OMAE2019-95565
In: (2019). ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering - Volume 7B: Ocean Engineering. ASME: [s.l.]. ISBN 978-0-7918-5885-1.

Available in  Authors 
Document type: Conference paper

Author keywords
    Ship motions model; NLSSVM; BAS; Parameter identification

Authors  Top 
  • Changyuan, C.
  • Tello Ruiz, M.
  • Delefortrie, G.
  • Mansuy, M.
  • Mei, T.
  • Vantorre, M.

Abstract
    In order to identify more accurately and efficiently the unknown parameters of a ship motions model, a novel Nonlinear Least Squares Support Vector Machine (NLSSVM) algorithm, whose penalty factor and Radial Basis Function (RBF ) kernel parameters are optimised by the Beetle Antennae Search algorithm (BAS), is proposed and investigated. Aiming at validating the accuracy and applicability of the proposed method, the method is employed to identify the linear and nonlinear parameters of the first-order nonlinear Nomoto model with training samples from numerical simulation and experimental data. Subsequently, the identified parameters are applied in predicting the ship motion. The predicted results illustrate that the new NLSSVM-BAS algorithm can be applied in identifying ship motion’s model, and the effectiveness is verified. Compared among traditional identification approaches with the proposed method, the results display that the accuracy is improved. Moreover, the robust and stability of the NLSSVM-BAS are verified by adding noise in the training sample data.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org