Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [323248]
Gaining insight in wind turbine drivetrain dynamics by means of automatic operational modal analysis combined with machine learning algorithms
Gioia, N.; Daems, P.J.; Peeters, C.; Guillaume, P.; Helsen, J.; Medico, R.; Deschrijver, D. (2019). Gaining insight in wind turbine drivetrain dynamics by means of automatic operational modal analysis combined with machine learning algorithms, in: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering - Volume 10: Ocean Renewable Energy. pp. 7
In: (2019). ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering - Volume 10: Ocean Renewable Energy. ASME: [s.l.]. ISBN 978-0-7918-5889-9.

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal

Authors  Top 
  • Gioia, N.
  • Daems, P.J.
  • Peeters, C.
  • Guillaume, P.
  • Helsen, J.
  • Medico, R.
  • Deschrijver, D.

Abstract
    Detailed knowledge about the modal model is essential to enhance the NVH behavior of (rotating) machines. To have more realistic insight in the modal behavior of the machines, observation of modal parameters must be extended to a significant amount of time, in which all the significant operating conditions of the turbine can be investigated, together with the transition events from one operating condition to another. To allow the processing of a large amount of data, automated OMA techniques are used: once frequency and damping values can be characterized for the important resonances, it becomes possible to gain insights in their changes. This paper will focus on processing experimental data of an offshore wind turbine gearbox and investigate the changes in resonance frequency and damping over time.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org