Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [366429]
Automated characterisation of deep-sea imagery using machine learning: implications for future conservation and mineral extraction
Tirado Barrio, M. (2023). Automated characterisation of deep-sea imagery using machine learning: implications for future conservation and mineral extraction. MSc Thesis. University of Bergen: Norway. 76 pp.

Available in  Author 
Document type: Dissertation

Keyword
    Marine/Coastal

Author  Top 
  • Tirado Barrio, M.

Abstract
    This thesis aimed to develop a methodology using Machine Learning (ML) techniques for the interpretation of deep-sea resources. The deep-sea hosts diverse ecosystems and valuable resources, but potential environmental implications, particularly from mining activities, necessitate effective management strategies. Detailed maps of the sea floor are therefore a necessity, yet such maps have to date only been produced based on manual interpretation which is time consuming and subjective. The study focused on assessing the potential of ML methods to map deep-sea features based on photomosaic and bathymetry data in order to take the first steps in developing an automated, objective, and time-saving technique. This thesis’s method accurately identified and classified features like chimneys at the hydrothermal vent fields, providing insights for resource interpretation and conservation. Integrating ML methods into deep-sea resource management is crucial. The methodology enhances understanding of complex techniques, such as Convolutional Neural Networks (CNN) and Object-Based Image Analysis (OBIA) to overcome a seabed characterization. Simultaneously describing the parameters utilised to achieve a meaningful classification. ML algorithms analyze large data volumes, extract patterns, and predict feature distributions, aiding targeted conservation measures and sustainable resource exploitation. The methodology successfully mapped hydrothermal chimneys in two study areas yet producer accuracies (0,7%) were higher than user accuracies (0,64%), indicating that there were other landforms that shared similar features. The methodology also helps assess potential environmental implications of future mining, supporting informed decision-making and mitigation strategies. It serves also as a foundation for future research to aim at overcoming problems related to incomplete spatial coverage, attempt to better utilize shape and spatial parameters within the OBIA refinement, try to identify more background classes for excluding them from the model, etc.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org