Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [383272]
Every seed counts: improving the germination success of Zostera marina seeds
Pieraccini, R; Picatto, L; Koedam, N.; Van der Stocken, T.; Vanreusel, A. (2024). Every seed counts: improving the germination success of Zostera marina seeds, in: Mees, J. et al. Book of abstracts – VLIZ Marine Science Day, 6 March 2024, Oostende. VLIZ Special Publication, 91: pp. 108
In: Mees, J.; Seys, J. (Ed.) (2024). Book of abstracts – VLIZ Marine Science Day, 6 March 2024, Oostende. VLIZ Special Publication, 91. Flanders Marine Institute (VLIZ): Oostende. vii + 130 pp. https://dx.doi.org/10.48470/71
In: VLIZ Special Publication. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISSN 1377-0950

Available in  Authors 
Document type: Summary

Keywords
    Zostera subg. Zostera marina Linnaeus, 1753 [WoRMS]
    Marine/Coastal
Author keywords
    Seagrass; Zostera Marina; Seed Germination; Hormone Priming; Gibberellic Acid

Authors  Top 
  • Pieraccini, R
  • Picatto, L
  • Koedam, N.
  • Van der Stocken, T.
  • Vanreusel, A., more

Abstract
    Coastal aquatic plants, such as seagrasses, play a pivotal role in maintaining biodiversity and  ecosystem function in marine environments by providing essential ecosystem services such as carbon sequestration, water purification, erosion protection, and support for biodiversity. Regrettably, seagrass populations, particularly those of Zostera marina, the most widely distributed seagrass species, are facing significant declines globally.Global efforts to restore these critical seagrass ecosystems are increasing in prevalence, with seed-based restoration emerging as a cost-effective method that facilitates the upscaling of Z. marina restoration initiatives. However, the success of seagrass restoration is hindered by remarkably low germination and seedling establishment rates, reported to be less than 5%.To address these low germination challenges, our study investigated the effects of hormone priming, with the use of gibberellic acid (GA3), on the germination of Z. marina seeds. We exposed a total of 1500 seeds to ten concentrations of GA3, and monitored germination success over 60 days. Our results revealed a statistically significant increase in germination success of seeds exposed to GA3 compared to the control group. Interestingly, both low and high GA3 concentrations were found to be more effective in stimulating germination compared to intermediate levels of GA3.Our findings underscore the great potential of GA3 priming to substantially improve germination success, providing valuable insights into potential applications of hormone priming as a strategic tool for enhancing germination success in restoration initiatives.   

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org