Global path planning for inland vessels based on fast marching algorithm
He, H.; Mansuy, M.; Verwilligen, J.; Delefortrie, G.; Lataire, E. (2024). Global path planning for inland vessels based on fast marching algorithm. Ocean Eng. 312: 119172. https://dx.doi.org/10.1016/j.oceaneng.2024.119172
Ship path planning is essential for enhancing navigation safety, shipping efficiency, cost savings and autonomy. This paper presents a path planning algorithm specifically designed for inland vessels, exemplified on the Western Scheldt waterway area from Hansweert to Bath in the Netherlands (known as the area of Schaar van Valkenisse). The algorithm utilizes the fast marching (FM) method to generate safe and cost-efficient paths for both autonomous and conventional navigation, considering factors such as water depth, distance to waterway borders, preferential navigation zones (e.g. starboard side and parallel routes), ship dimensions, and manoeuvring characteristics. The fast marching algorithm uses starting points and a velocity grid, generated based on the aforementioned factors, to produce an arrival time map. The velocity here represents preferences for deeper water, and wider and starboard navigation zones. Subsequently, a gradient descent algorithm is applied to determine the fastest route from the destination to the starting point on the arrival time map. To ensure the route is navigable, the optimal path is updated to a Dubins path that satisfies the ships’ dynamic constraints by using a so-called Dubins model filter. Case studies with various navigation scenarios demonstrate that the path planning tool can provide expected results with tunable parameters allowing for customized preferences. This work can further assist in predicting paths for a traffic study, designing fairways, aids to navigation and can possibly serve as an operational tool to assess the accessibility of a (alternative) fairway.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy