Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Biogeochemistry of major redox elements and mercury in a tropical reservoir lake (Petit Saut, French Guiana)
Peretyazhko, T.; Van Cappellen, P.; Meile, C.; Coquery, M.; Musso, M.; Regnier, P.; Charlet, L. (2005). Biogeochemistry of major redox elements and mercury in a tropical reservoir lake (Petit Saut, French Guiana). Aquat. Geochem. 11(1): 33-55. dx.doi.org/10.1007/s10498-004-0752-x
In: Aquatic Geochemistry. Springer/Springer Science+Business Media: London; Dordrecht; Boston. ISSN 1380-6165; e-ISSN 1573-1421
Peer reviewed article  

Available in  Authors 

Author keywords
    biogeochemistry; hydroelectric reservoir; mercury; Petit Saut; redox stratification

Authors  Top 
  • Peretyazhko, T.
  • Van Cappellen, P.
  • Meile, C.
  • Coquery, M.
  • Musso, M.
  • Regnier, P.
  • Charlet, L.

Abstract
    The hydroelectric reservoir of Petit Saut, French Guiana, was created in 1994–1995 by flooding 350?km2 of tropical forest. When sampled in 1999, the lake exhibited a permanent stratification separating the 3–5?m thick, oxygenated epilimnion from the anoxic hypolimnion. The rate of anaerobic organic carbon mineralization below the oxycline was on the order of 1 µmol C m-2 s-1 and did not show a pronounced difference between wet and dry seasons. Methanogenesis accounted for 76–83% of anaerobic carbon mineralization, with lesser contributions of sulfate reduction and dissimilatory iron reduction. Upward mixing of reduced inorganic solutes explained 90% of the water column O2 demand during the dry season, while most O2 consumption during the wet season was coupled to aerobic respiration of organic matter synthesized in the surface waters. Inorganic mercury species represented 10–40% of total dissolved mercury in the epilimnion, but were of relatively minor importance (=10%) in the anoxic portion of the water column. Net production of soluble organic mercury compounds in the flooded soils and anoxic water column did not vary significantly between wet and dry seasons. Methylmercury accounted for about 15% of total dissolved mercury below the oxycline. Its estimated net production rate, 0.04 mg m-2 yr-1, is of the same order of magnitude as values reported for contaminated lakes and flooded terrestrial ecosystems.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org