Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

The capacity of filter-feeding organisms to affect water transport in sandy beds: the example of Mya arenaria
Forster, S.; Zettler, M.L. (2004). The capacity of filter-feeding organisms to affect water transport in sandy beds: the example of Mya arenaria. Mar. Biol. (Berl.) 144(6): 1183-1189. dx.doi.org/10.1007/s00227-003-1278-2
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Forster, S., more
  • Zettler, M.L.

Abstract
    Benthic filter feeding macrofauna organisms may be an important factor linking sediment and water column. Transport of water and concomitantly of suspended matter is directly related to the size of the benthic filter feeding population. This paper aims to determine the potential for water transport by the bivalve Mya arenaria along a coastal stretch of roughly 100 km length in the southern Baltic Sea. Quantification of population filtration rates specific to the area is based on distribution, abundance and biomass of M. arenaria and calculated according to previously published filtration rate-biomass relations. Calculated rates range up to >8 m3 m-2 day-1 (at 5-20 m water depth in sandy sediment) with the potential to locally process a volume of water equivalent to the water column within <1 day. Data from 1991-2002 at one site suggest that the area-specific potential population filtration rate remains remarkably constant in time despite changes in population structure of M. arenaria. The related impact on pore water exchange within the permeable sediment associated with the leakage of water from the gape of M. arenaria valves is discussed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org