Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [207804]
The effect of the dominant polychaete Scolelepis squamata on nematode colonisation in sandy beach sediments: An experimental approach
Maria, T.F.; Esteves, A.M.; Vanaverbeke, J.; Vanreusel, A. (2011). The effect of the dominant polychaete Scolelepis squamata on nematode colonisation in sandy beach sediments: An experimental approach. Est., Coast. and Shelf Sci. 94(3): 272-280. dx.doi.org/10.1016/j.ecss.2011.07.006
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015
Peer reviewed article  

Available in  Authors 

Keywords
    Colonisation
    Interactions
    Microcosms
    Nematoda [WoRMS]; Scolelepis squamata (Müller, 1806) [WoRMS]; Scolelepis squamata (Müller, 1806) [WoRMS]
    ANE, North Sea [Marine Regions]
    Marine/Coastal
Author keywords
    biological interactions; colonisation; nematodes; Scolelepis squamata; microcosm experiment; North Sea

Authors  Top 
  • Maria, T.F.
  • Esteves, A.M.
  • Vanaverbeke, J., more
  • Vanreusel, A., more

Abstract
    The effect of an abundant sandy beach polychaete, Scolelepis squamata, on the colonisation of defaunated sediments by marine nematodes indicates that sandy beach fauna can be partially controlled by biological interactions within and across size groups. Experimental cores, equipped with windows allowing infaunal colonisation, were filled with defaunated sandy beach sediment containing two different treatments with and without S. squamata. These cores were inserted into microcosms filled with sediment with indigenous meiofauna collected from the field. The treatments were incubated in the laboratory at ambient temperature and salinity for 2, 7, 14 and 21 days, in order to follow the colonisation process of the defaunated sediments by the indigenous nematode fauna over time. Nematodes initially colonised both treatments, with abundances of up to 10% of the densities in the control; after 2 weeks, nematode densities in the cores without S. squamata surpassed the control densities. Nematode assemblages in both treatments were not species rich, and also differed in composition from the natural assemblages. The most successful colonising species, Enoplolaimus litoralis, was rare in the surrounding sediment, suggesting that colonisation was determined by species-specific characteristics such as body size, motility and feeding strategy. Initially the presence of macrofauna did not affect the nematode community composition, but after 2 weeks of the experiment, the presence of the polychaete seemed to facilitate the earlier establishment of non-opportunistic species.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org