Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Saccharides enhance iron bioavailability to Southern Ocean phytoplankton
Hassler, C.S.; Schoemann, V.; Nichols, C.M.; Butler, E.C.V.; Boyd, P.W.; Nichols, C.M. (2011). Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. U.S.A. 108(3): 1076-1081. dx.doi.org/10.1073/pnas.1010963108
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490
Peer reviewed article  

Available in  Authors 

Author keywords
    trace metals; carbohydrates; organic matter; exopolymeric substances;plankton

Authors  Top 
  • Hassler, C.S.
  • Schoemann, V.
  • Nichols, C.M.
  • Butler, E.C.V.
  • Boyd, P.W.
  • Nichols, C.M.

Abstract
    Iron limits primary productivity in vast regions of the ocean. Given that marine phytoplankton contribute up to 40% of global biological carbon fixation, it is important to understand what parameters control the availability of iron (iron bioavailability) to these organisms. Most studies on iron bioavailability have focused on the role of siderophores; however, eukaryotic phytoplankton do not produce or release siderophores. Here, we report on the pivotal role of saccharides-which may act like an organic ligand-in enhancing iron bioavailability to a Southern Ocean cultured diatom, a prymnesiophyte, as well as to natural populations of eukaryotic phytoplankton. Addition of a monosaccharide (>2 nM of glucuronic acid, GLU) to natural planktonic assemblages from both the polar front and subantarctic zones resulted in an increase in iron bioavailability for eukaryotic phytoplankton, relative to bacterioplankton. The enhanced iron bioavailability observed for several groups of eukaryotic phytoplankton (i.e., cultured and natural populations) using three saccharides, suggests it is a common phenomenon. Increased iron bioavailability resulted from the combination of saccharides forming highly bioavailable organic associations with iron and increasing iron solubility, mainly as colloidal iron. As saccharides are ubiquitous, present at nanomolar to micromolar concentrations, and produced by biota in surface waters, they also satisfy the prerequisites to be important constituents of the poorly defined "ligand soup," known to weakly bind iron. Our findings point to an additional type of organic ligand, controlling iron bioavailability to eukaryotic phytoplankton-a key unknown in iron biogeochemistry.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org