Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Lanice conchilega structures carbon flows in soft-bottom intertidal areas
De Smet, B.; van Oevelen, D.; Vincx, M.; Vanaverbeke, J.; Soetaert, K. (2016). Lanice conchilega structures carbon flows in soft-bottom intertidal areas. Mar. Ecol. Prog. Ser. 552: 47-60. http://dx.doi.org/10.3354/meps11747
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599
Peer reviewed article  

Available in  Authors | Dataset 

Keywords
    Lanice conchilega (Pallas, 1766) [WoRMS]
    Marine/Coastal
Author keywords
    Linear inverse model; Biogenic habitat; Food web; Network analysis; Stable isotopes; Ecosystem engineering

Authors  Top | Dataset 
  • De Smet, B.
  • van Oevelen, D.
  • Vincx, M., more
  • Vanaverbeke, J., more
  • Soetaert, K., more

Abstract
    Biogenic reefs constructed by the tube-building ecosystem engineer Lanice conchilega (Terrebilidae, Polychaeta) have profound structuring impacts on the benthic environment in that they alter the biogeochemical and physical properties of the sediment. This study provides new insights into the functioning and effects on food webs of L. conchilega reefs in intertidal sediments using linear inverse models to quantify the carbon flows in the food webs in the presence and absence of the tubeworm. The inverse food web models were based on an empirical dataset from 2 study sites, which provided biomass and stable isotope data, and information on general physiological constraints from the literature. Results of the model showed that the carbon input into reef food webs (mean ± SE; 191 ± 50 mmol C m-2 d-1) is ca. 40 times higher compared to bare sand areas (5 ± 2 mmol C m-2 d-1) and is mainly derived from organic matter (OM) in the water column. Most of the OM input towards these reefs is consumed by suspension-feeding macrofauna, particularly L. conchilega; however, the worm is not an important source of carbon for other macrofaunal organisms. The ratio of OM input to primary production indicates that the OM needs to be produced in an area at least 15 times larger than the reef area, demonstrating significant OM ‘focussing’ within the reef food web. The reef structures created by L. conchilega act as a trap for OM, resulting in an overall higher macrofaunal biomass and much more diverse food webs than in the absence of the tubeworm.

Dataset
  • Picture catalogue of morphotypes found in faecal samples of wading birds in the Lanice conchilega reef of the Bay of the Mont Saint-Michel (France)

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org