Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Finding navigation cues near fishways
Elings, J.; Bruneel, S.; Pauwels, I.S.; Schneider, M.; Kopecki, I.; Coeck, J.; Mawer, R.; Goethals, P.L.M. (2024). Finding navigation cues near fishways. Biol. Rev. 99(1): 313-327. https://dx.doi.org/10.1111/brv.13023
In: Biological Reviews. Cambridge Philosophical Society: Cambridge. ISSN 1464-7931; e-ISSN 1469-185X
Peer reviewed article  

Available in  Authors 

Keywords
    Brackish water; Fresh water

Authors  Top 
  • Elings, J.
  • Bruneel, S.
  • Pauwels, I.S.
  • Schneider, M.
  • Kopecki, I.
  • Coeck, J.
  • Mawer, R.
  • Goethals, P.L.M.

Abstract

    Many fish species depend on migration for various parts of their life cycle. Well-known examples include diadromous fish such as salmon and eels that need both fresh water and salt water to complete their life cycle. Migration also occurs within species that depend only on fresh water. In recent decades, anthropogenic pressures on freshwater systems have increased greatly, and have resulted, among other effects, in drastic habitat fragmentation. Fishways have been developed to mitigate the resulting habitat fragmentation, but these are not always effective. To improve fishway efficiency, the variety of navigation cues used by fish must be better understood: fish use a multitude of sensory inputs ranging from flow variables to olfactory cues. The reaction of a fish is highly dependent on the intensity of the cue, the fish species involved, and individual traits. Recently developed monitoring technologies allow us to gain insights into different combinations of environmental and physiological conditions. By combining fish behavioural models with environmental models, interactions among these components can be investigated. Several methods can be used to analyse fish migration, with state-space models, hidden Markov models, and individual-based models potentially being the most relevant since they can use individual data and can tie them to explicit spatial locations within the considered system. The aim of this review is to analyse the navigational cues used by fish and the models that can be applied to gather knowledge on these processes. Such knowledge could greatly improve the design and operation of fishways for a wider range of fish species and conditions.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org